标记医学图像取决于专业知识,因此很难在短时间内以高质量获取大量注释的医学图像。因此,在小型数据集中充分利用有限标记的样品来构建高性能模型是医疗图像分类问题的关键。在本文中,我们提出了一个深入监督的层选择性注意网络(LSANET),该网络全面使用功能级和预测级监督中的标签信息。对于特征级别的监督,为了更好地融合低级功能和高级功能,我们提出了一个新颖的视觉注意模块,层选择性注意(LSA),以专注于不同层的特征选择。 LSA引入了一种权重分配方案,该方案可以在整个训练过程中动态调整每个辅助分支的加权因子,以进一步增强深入监督的学习并确保其概括。对于预测级的监督,我们采用知识协同策略,通过成对知识匹配来促进所有监督分支之间的层次信息互动。使用公共数据集MedMnist,这是用于涵盖多种医学专业的生物医学图像分类的大规模基准,我们评估了LSANET在多个主流CNN体系结构和各种视觉注意模块上评估。实验结果表明,我们所提出的方法对其相应的对应物进行了实质性改进,这表明LSANET可以为医学图像分类领域的标签有效学习提供有希望的解决方案。
translated by 谷歌翻译
当训练过度参数化的深网以进行分类任务时,已经广泛观察到,学到的功能表现出所谓的“神经崩溃”现象。更具体地说,对于倒数第二层的输出特征,对于每个类,课堂内特征会收敛到其平均值,而不同类别的手段表现出一定的紧密框架结构,这也与最后一层的分类器对齐。由于最后一层的特征归一化成为现代表示学习中的一种常见实践,因此,在这项工作中,我们从理论上证明了归一化特征的神经崩溃现象是合理的。基于不受约束的特征模型,我们通过限制球体上的所有特征和分类器来简化多级分类任务中的经验损失函数。在这种情况下,我们分析了riemannian优化问题在球体的产物上的非概念景观,从而显示出良性的全球景观,因为唯一的全球最小化器是神经崩溃的解决方案,而所有其他关键点是严格的鞍座。实用深网的实验结果证实了我们的理论,并证明可以通过特征归一化更快地学习更好的表示。
translated by 谷歌翻译
表结构识别是文档图像分析域的关键部分。它的困难在于需要同时解析每个单元的物理坐标和逻辑指标。但是,现有的方法很难实现这两个目标,尤其是当表分裂线被模糊或倾斜时。在本文中,我们提出了一种基于端到端变压器的表面结构识别方法,称为信任。变压器由于其全局计算,完美的内存和并行计算而适合表结构识别。通过引入基于新型变压器基于查询的新型分裂模块和基于顶点的合并模块,表结构识别问题被脱钩到两个关节优化子任务中:多面向的表行/列分拆分和表格格里合并。基于查询的拆分模块通过变压器网络从长期依赖项中学习了强烈的上下文信息,准确预测了多个面向的表行/列分离器,并相应地获得了表的基本网格。基于顶点的合并模块能够在相邻的基本网格之间汇总局部上下文信息,从而能够合并准确属于同一跨越单元的基本束。我们对包括PubTabnet和Connthtable在内的几个流行基准进行实验,我们的方法实现了新的最新结果。特别是,信任在PubTabnet上以10 fps的速度运行,超过了先前的方法。
translated by 谷歌翻译
基于匹配的方法,尤其是基于时空记忆的方法,在半监督视频对象分割(VOS)中明显领先于其他解决方案。但是,不断增长和冗余的模板特征导致推断效率低下。为了减轻这一点,我们提出了一个新型的顺序加权期望最大化(SWEM)网络,以大大降低记忆特征的冗余。与以前仅检测帧之间特征冗余的方法不同,Swem通过利用顺序加权EM算法来合并框架内和框架间的相似特征。此外,框架特征的自适应权重具有代表硬样品的灵活性,从而改善了模板的歧视。此外,该提出的方法在内存中保留了固定数量的模板特征,从而确保了VOS系统的稳定推理复杂性。对常用的戴维斯和YouTube-VOS数据集进行了广泛的实验,验证了SWEM的高效率(36 fps)和高性能(84.3 \%$ \ Mathcal {J} \&\ Mathcal {F} $代码可在以下网址获得:https://github.com/lmm077/swem。
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
细颗粒的对象检索旨在学习判别性表示以检索视觉上相似的对象。但是,现有的表现最佳作品通常在语义嵌入空间上施加成对的相似性,以在有限数据方面不断调整整个模型,从而使次优溶液易于收敛。在本文中,我们开发了细粒度的检索提示调整(FRPT),该调整引导了一个冷冻的预训练模型,从样本提示和功能适应的角度从样本提示的角度执行精细颗粒的检索任务。具体而言,FRPT只需要在提示中学习更少的参数和适应性,而不是对整个模型进行微调,从而解决了通过微调整个模型引起的次优溶液的收敛性。从技术上讲,随着样本提示,引入结构扰动提示(SPP)以缩放甚至夸大了一些像素,从而通过内容感知到的不均匀采样操作为类别预测做出了贡献。这样,SPP可以通过在原始预训练期间接近已解决的任务的扰动提示来帮助您的精细颗粒检索任务。此外,提出了特定于类别的意识头并将其视为特征适应,它可以使用实例归一化在预训练模型提取的特征中消除物种差异,因此仅使优化的功能仅包括子类别之间的差异。广泛的实验表明,我们的FRPT具有较少的可学习参数,可以在三个广泛使用的细粒数据集上实现最先进的性能。
translated by 谷歌翻译
目前全面监督的面部地标检测方法迅速进行,实现了显着性能。然而,当在大型姿势和重闭合的面孔和重闭合时仍然遭受痛苦,以进行不准确的面部形状约束,并且标记的训练样本不足。在本文中,我们提出了一个半监督框架,即自我校准的姿势注意网络(SCPAN),以实现更具挑战性的情景中的更强大和精确的面部地标检测。具体地,建议通过定影边界和地标强度场信息来模拟更有效的面部形状约束的边界意识的地标强度(BALI)字段。此外,设计了一种自我校准的姿势注意力(SCPA)模型,用于提供自学习的目标函数,该功能通过引入自校准机制和姿势注意掩模而无需标签信息而无需标签信息。我们认为,通过将巴厘岛领域和SCPA模型集成到新颖的自我校准的姿势网络中,可以了解更多的面部现有知识,并且我们的面孔方法的检测精度和稳健性得到了改善。获得具有挑战性的基准数据集获得的实验结果表明,我们的方法优于文献中最先进的方法。
translated by 谷歌翻译
结构化修剪是一种常用的技术,用于将深神经网络(DNN)部署到资源受限的设备上。但是,现有的修剪方法通常是启发式,任务指定的,并且需要额外的微调过程。为了克服这些限制,我们提出了一个框架,将DNN压缩成纤薄的架构,具有竞争性表现,并且仅通过列车 - 一次(OTO)减少重大拖车。 OTO包含两个键:(i)我们将DNN的参数分区为零不变组,使我们能够修剪零组而不影响输出; (ii)促进零群,我们制定了结构性稀疏优化问题,提出了一种新颖的优化算法,半空间随机投影梯度(HSPG),以解决它,这优于组稀疏性探索的标准近端方法和保持可比的收敛性。为了展示OTO的有效性,我们从划痕上同时培训和压缩全模型,而无需微调推理加速和参数减少,并且在CIFAR10的VGG16实现最先进的结果,为CIFAR10和Squad的BERT为BERT竞争结果在resnet50上为想象成。源代码可在https://github.com/tianyic/only_train_once上获得。
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
With the ever-growing model size and the limited availability of labeled training data, transfer learning has become an increasingly popular approach in many science and engineering domains. For classification problems, this work delves into the mystery of transfer learning through an intriguing phenomenon termed neural collapse (NC), where the last-layer features and classifiers of learned deep networks satisfy: (i) the within-class variability of the features collapses to zero, and (ii) the between-class feature means are maximally and equally separated. Through the lens of NC, our findings for transfer learning are the following: (i) when pre-training models, preventing intra-class variability collapse (to a certain extent) better preserves the intrinsic structures of the input data, so that it leads to better model transferability; (ii) when fine-tuning models on downstream tasks, obtaining features with more NC on downstream data results in better test accuracy on the given task. The above results not only demystify many widely used heuristics in model pre-training (e.g., data augmentation, projection head, self-supervised learning), but also leads to more efficient and principled fine-tuning method on downstream tasks that we demonstrate through extensive experimental results.
translated by 谷歌翻译